![](https://static.wixstatic.com/media/bacae0_a4a4dd2e20634d48882483f3bfa36e97~mv2.png/v1/fill/w_292,h_351,al_c,q_85,enc_avif,quality_auto/bacae0_a4a4dd2e20634d48882483f3bfa36e97~mv2.png)
Srinivasa Ramanujan, 22 Aralık 1887’de, Hindistan’ın Tamil Nadu kentinde, doğdu. Hindistan’ın Kumbakonam kasabasında, bugün başarılarını simgeleştirmek için bir müzeye dönüştürülen bir evde büyüdü. Kardeşlerini küçük yaşta çiçek hastalığı nedeniyle kaybetti. Yoksulluk ile mücadele eden ailesi ona temel bir eğitim imkanı sunabildi. On bir yaşındayken üniversite düzeyinde matematik bilgisine sahipti ve matematik teoremleri geliştirmeye başlamıştı. İlgi alanı daha çok geometri ve sonsuz seriler üzerine yoğunlaşmıştı. Ramanujan on beş yaşındayken, kübik bir denklemin nasıl çözüleceğini gösterdi. İkinci dereceden denklemleri çözmek için kendi tekniğini geliştirdi.
1903’te, Ramanujan on altı yaşındayken Synopsis of Elementary Results in Pure and Applied Mathematics (Soyut ve Uygulamalı Matematikte Temel Bilgiler Özeti) adındaki bir kitaba denk geldi. Kitap aslında bir ders kitabıydı ve ispatlara girilmeden binlerce sonuç, formül ve denklem içeriyordu. Kuramsal matematiği ilk kez bu kitaptan öğrenen Ramanujan’a hayatı boyunca belki de bu nedenle bir ispat yapma ihtiyacı duymadı.
Matematik dışında başka hiçbir konu ile ilgilenmeyen Ramanujan ilerleyen süreçte okulu bıraktı. Yoksulluk ve açlık ile mücadele ederken aynı zamanda çalışmalarına da devam etti. 1909’da, annesi tarafından seçilen ve o sırada sadece on yaşında olan bir kızla evlendi. Bu bir Hint geleneğiydi ve sıra dışı değildi. Şimdi aile sorumlulukları olan Ramanujan bir iş, özellikle de bir büro görevi arıyordu. Bir süre ders vererek kendini idame ettirdi. Sonunda, Mayıs 1913’te Madras Üniversitesi’nde araştırma pozisyonu aldı ve ailesiyle Triplicane’ye taşındı. Ramanujan’ın dehasını anlayabilmek için bir örnek olarak, π sayısının değerini elde etmek için geliştirdiği formüllere göz atmak yeterlidir.
![](https://static.wixstatic.com/media/bacae0_28681073c88848debbdb7d7999bb7416~mv2.png/v1/fill/w_522,h_147,al_c,q_85,enc_avif,quality_auto/bacae0_28681073c88848debbdb7d7999bb7416~mv2.png)
![](https://static.wixstatic.com/media/bacae0_8a4c392562ce4b2c80f4689b05466687~mv2.png/v1/fill/w_408,h_422,al_c,q_85,enc_avif,quality_auto/bacae0_8a4c392562ce4b2c80f4689b05466687~mv2.png)
Ramanujan çalışmalarını profesyonel matematik dünyasına duyurmak çok çabaladı, bunun için onlarca mektup yazdı. Hiç olumlu cevap almadı ama yazmaya devam etti. İngiliz matematikçilerden bazıları, resmi bir eğitimi olmadığını iddia ederek mektuplarına cevap bile vermedi. 1913’te Orders of Infinity kitabının büyüsüne kapılan Ramanujan, kitabın yazarı ünlü İngiliz matematikçi GH Hardy’ye (1877–1947) bir mektup yazdı. Bir kez daha mektubunda, resmi eğitimden yoksun olduğunu belirtti, ancak bu sefer mektubuna çalışmalarından bazı örnekler ekledi.
Hardy, hiçbir kanıtla desteklenmemiş güvenilmez iddialar ve tuhaf teoremlerle dolu bu mektuba başta önem vermedi. Ama mektuba ilişkin bir şey belki de aşırı tuhaflığı Hardy’nin aklını çeldi. Mektubu üç saat boyunca inceleyen Hardy ve meslektaşı Littlewood sonunda karşılarında bir dahi olduğuna karar verdiler. Hardy Ramanujan’a cevap yazarak bazı ispatlar göndermesini istedi. Ancak Ramanujan bu ispatları sağlayamadı çünkü muhtemel yoktu. Bunun yerine bir sonraki mektubunda yine ispatları olmadan daha da fazla sonuç gönderdi.
Sonunda Hardy Ramanujan’ı 1914’te Londra’ya gelmesi konusunda ikna etti. Fiziksel zayıflığına rağmen Ramanujan, Cambridge Üniversitesi’ne öğrenci olarak kaydoldu. 1916’da, o zamanlar lisans derecesi olarak adlandırılan, ancak bugün doktora olarak değerlendirilen bir derece aldı. Ertesi yıl, Cambridge Philosophical Society’nin bir üyesi olarak seçildi. Kısa bir süre sonrada Royal Society of London’ın bir üyesi seçilerek hayatının en büyük onurunu elde etti. Ardından Cambridge Üniversitesi Trinity College’ın öğretim üyeliğine seçildi. Ancak giderek artan sağlık sorunları endişe vermeye başlamıştı. Ertesi yıl Ramanujan Hindistan’a döndü. Ancak sağlığı pek iyileşmedi ve 26 Nisan 1920’de 32 yaşında Hindistan’da veremden öldü.
12.Sınıf Diziler konusunda gördüğümüz sonsuz toplam formülleri; yeterli düzeyde eğitim almamış ama kendini matematiğe, sayılara adayan Hindistan kast sistemine göre Brahman bir ailede doğmuş insan aklıyla orta konuldu ve ispatlandı.
“Her ne olursa olsun hedefinizden vazgeçmediğiniz sürece başarı sizi bir gün muhakkak bulacaktır. Büyük adamların amaçları, diğerlerinin yalnızca istekleri vardır.”
Comments